Röchling

Industrial

Technical Data Sheet Sustamid[®] 6 red

Typical characteristics

- Good toughness
- Good noise absorption properties
- Vibration damping
- High absorption of moisture of up to 3 % in standard atmosphere
- High abrasion resistance
- High mechanical strength
- Good impact strength
- good adhesive properties
- Good weldability
- Good machinability
- Good sliding properties

Test method Unit **Guideline value General properties** Densité DIN EN ISO 1183-1 g/cm^3 1,14 DIN EN ISO 62 3,0 Water absorption % Flammability (Thickness 3 mm / 6 mm) UL 94 HB / HB **Mechanical properties** Yield stress DIN EN ISO 527 MPa 80 Elongation at break DIN EN ISO 527 % 50 DIN EN ISO 527 MPa 3200 Tensile modulus of elasticity DIN EN ISO 179 Notched impact strength kJ/m^2 3 Shore hardness DIN EN ISO 868 scale D 82 **Thermal properties** Melting temperature ISO 11357-3 °C 220 DIN 52612-1 W / (m * K) Thermal conductivity 0,23 Thermal capacity DIN 52612 kJ / (kg * K) 1,70

Typical industries

d'installations

confiserie

Industrie aérospatialeIndustrie agroalimentaire

• Construction de machines et

• La transformation des viandes, des poissons, des volailles

• Produits de boulangerie et de

Röchling Industrial Lahnstein SE & Co. KG Sustaplast-Str. 1 • 56112 Lahnstein/Germany (DE) • Tel. +49 2621 693-0 info.lahnstein@roechling.com • www.roechling.com/industrial/lahnstein

Print: 22/12/2024 • Release: 20/09/2023 PIM-Version: 655 • PIM-ID: 591406 • PIM-Code: 655-9-17.10.10.14.63.23.162.14.16.70.223-5.8.5.5.5-11

ALL DE MENALSISTEM

Röchling

Industrial

	Test method	Unit	Guideline value
Coefficient of linear thermal expansion	DIN 53752	10 ⁻⁶ / K	90
Service temperature, long term	Average	°C	-40 85
Service temperature, short term (max.)	Average	°C	160
Heat deflection temperature	DIN EN ISO 75, Verf. A, HDT	°C	75
Electrical properties			
Dielectric constant	IEC 60250		3,9
Dielectric dissipation factor (50 Hz)	IEC 60250		0,02
Volume resistivity	DIN EN 62631-3-1	Ω*cm	10 ¹⁵
Surface resistivity	DIN EN 62631-3-2	Ω	10 ¹³
Comparative tracking index	IEC 60112		600
Dielectric strength	IEC 60243	kV / mm	20

The following applies to Polyamides: Under the influence of moisture absorption, the mechanical properties change. The material becomes tougher and more resistant to impact, the modulus of elasticity declines. Depending on the environmental atmosphere, the temperature and the period of moisture absorption, only the surface layer is affected by alterations of property to a certain depth. On thick-walled parts, the center area remains unaffected. The short-term maximum application temperature only applies to very low mechanical properties. This applies to an exposure to temperatures for at least 5.000 hours causing a 50% loss of the tensile strength from the original value (measured at room temperature). This value says nothing about the mechanical strength of the material at high application temperatures. In case of thick-walled parts, only the surface layer is affected by oxidation from high temperatures. With the addition of antioxidants, a better protection of the surface layer is achieved. In any case, the center area of the material remains unaffected. The minimum application temperature is basically influenced by possible stress factors like impact and/or shock under application. The values stated refer to an minimum degree of impact stress. The data stated above are average values ascertained by statistical tests on a regular basis. They are in accordance with DIN EN 15860. They serve as information about our products and are presented as a guide to choose from our range of materials. This, however, does not include an assurance of specific properties or the suitability for particular application purposes that are legally binding. Since the properties also depend on the immission of the semi-finished products and the degree of crystallization (e.g. nucleating by pigments), the actual values of the properties of a particular product may differ from the indicated values.

Röchling Industrial Lahnstein SE & Co. KG Sustaplast-Str. 1 • 56112 Lahnstein/Germany (DE) • Tel. +49 2621 693-0 info.lahnstein@roechling.com • www.roechling.com/industrial/lahnstein

Print: 22/12/2024 • Release: 20/09/2023 PIM-Version: 655 • PIM-ID: 591406 • PIM-Code: 655-9-17.10.10.14.63.23.162.14.16.70.223-5.8.5.5.5-11

